

Exploiting Problem-Specific Knowledge and Computational Resources in Derivative-Free Optimization

Jeffrey Larson

Argonne National Laboratory

September 8, 2015

Problem setup

minimize
$$f(x; S(x))$$

subject to: $x \in \mathcal{D} \subset \mathbb{R}^n$

where the objective f depends on the output(s) from a simulation S(x).

Problem setup

$$\underset{x}{\text{minimize }} f(x; S(x)) \\
\text{subject to: } x \in \mathcal{D} \subset \mathbb{R}^n$$

where the objective f depends on the output(s) from a simulation S(x).

- Derivatives of S may not be available
- Constraints defining D may or may not depend on S
- ▶ The dimension *n* is small
- Evaluating S is expensive
- ▶ f and/or S may be noisy. If the noise is stochastic,

$$\underset{x}{\text{minimize }} \mathbb{E}\left[\overline{f}(x)\right].$$

Grid over the domain

(easily parallelizable)

► Grid over the domain (easily parallelizable)

► Random sampling (easily parallelizable)

► Grid over the domain (easily parallelizable)

► Random sampling (easily parallelizable)

► Evolutionary Algorithms (many are parallelizable)

Grid over the domain

(easily parallelizable)

Random sampling

(easily parallelizable)

- Evolutionary Algorithms
 - Genetic Algorithm
 - Simulated Annealing
 - Particle Swarm
 - Ant Colony Optimization
 - Bee Colony Optimization
 - Cuckoo Search
 - Bacterial Colony Optimization
 - Grey Wolf Optimization
 - Firefly Optimization
 - Harmony Search
 - River Formation Dynamics

(many are parallelizable)

Approximate Gradients

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

▶ $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

- $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$
 - For Kiefer-Wolfowitz.

$$G_i(x^k) = \frac{\overline{f}(x^k + c_k e_i) - \overline{f}(x^k - c_k e_i)}{2c_k}$$

where e_i is the *i*th column of I_n .

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

- ▶ $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$
 - ► For Spall's SPSA,

$$G_i(x^k) = \frac{\overline{f}(x^k + c_k \delta^k) - \overline{f}(x^k - c_k \delta^k)}{2c_k \delta_i^k}$$

where $\delta^{k} \in \mathbb{R}^{n}$ is a random perturbation vector

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

▶ $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$

 $ightharpoonup a_k$ is a sequence of step sizes

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

▶ $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$

 $ightharpoonup a_k$ is a sequence of step sizes (specified by the user) satisfying:

$$\sum_{k=1}^{\infty} a_k = \infty \qquad \lim_{k \to \infty} a_k = 0$$

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

• $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$

 $ightharpoonup a_k$ is a sequence of step sizes (specified by the user) satisfying:

$$\sum_{k=1}^{\infty} a_k = \infty \qquad \lim_{k \to \infty} a_k = 0$$

Algorithm performance depends significantly on sequence a_k .

Modify Existing Methods for Stochastic

Take a favorite method and repeatedly evaluate the function at points of interest.

- Stochastic approximation modified by Dupuis, Simha (1991)
- ▶ Response surface methods modified by Chang et al. (2012)
- ▶ UOBYQA modified by Deng, Ferris (2006)
- Nelder-Mead modified by Tomick et al. (1995)
- DIRECT modified by Deng, Ferris (2007)

Modify Existing Methods for Stochastic

Take a favorite method and repeatedly evaluate the function at points of interest.

- ► Stochastic approximation modified by Dupuis, Simha (1991)
- ▶ Response surface methods modified by Chang et al. (2012)
- ▶ UOBYQA modified by Deng, Ferris (2006)
- Nelder-Mead modified by Tomick et al. (1995)
- ▶ DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:

- 1. Repeated sampling provides information about the noise ϵ , not f.
- 2. If the noise is deterministic, no information is gained.

14 of 39

14 of 39

DFO warnings

- ▶ Be careful
 - 1) A problem can be written as scalar output, black box
 - 2) An algorithm exists to optimize scalar output, black box function
 - 1) and 2) true doesn't mean the algorithm should be used

DFO warnings

- ▶ Be careful
 - 1) A problem can be written as scalar output, black box
 - 2) An algorithm exists to optimize scalar output, black box function
 - 1) and 2) true doesn't mean the algorithm should be used

$$\underset{x}{\text{minimize}} f(x) = \|Ax - b\|$$

DFO warnings

- Be careful
 - 1) A problem can be written as scalar output, black box
 - 2) An algorithm exists to optimize scalar output, black box function
 - 1) and 2) true doesn't mean the algorithm should be used

$$\underset{x}{\text{minimize }} f(x) = \|Ax - b\|$$

- If your problem has derivatives, please use them. If you don't have them...
 - Algorithmic Differentiation (AD) is wonderful

Does the problem have structure? Avoid black boxes

Opening up the black box

$$f(x) = \sum_{i=1}^{r} (F_i(x) - T_i)^2$$

Can either have a solver that uses f(x) or $[F_1(x), \ldots, F_r(x)]$.

Tuning quadrapole moments for a particle accelerator simulation.

$$f(x) = \sum_{i=1}^{r} (F_i(x) - T_i)^2$$

Can either have a solver that uses f(x) or $[F_1(x), \ldots, F_r(x)]$.

Energy density functional calibrations.

Energy density functional calibrations.

Small gas network problem.

- ▶ 15 variables
 - 11 constraints

- ▶ $\nabla_x f$ and $\nabla_x c$
- f and $\nabla_x c$
- ▶ f and c (separate) black boxes
- Penalizing constraints

Nonsmooth, composite optimization

$$\underset{x}{\text{minimize }} f(x) = h(F(x))$$

where ∇F is unavailable but ∂h is known

Nonsmooth, composite optimization

$$\underset{x}{\text{minimize }} f(x) = h(F(x))$$

where ∇F is unavailable but ∂h is known

Multiple objectives

Nonsmooth, composite optimization

$$\underset{x}{\text{minimize }} f(x) = h(F(x))$$

where ∇F is unavailable but ∂h is known

Multiple objectives

Controllable accuracy

Nonsmooth, composite optimization

$$\underset{x}{\text{minimize}} f(x) = h(F(x))$$

where ∇F is unavailable but ∂h is known

Multiple objectives

Controllable accuracy

► Multiple local minima

Motivation

▶ We want to identify distinct, "high-quality", local minimizers of

minimize
$$f(x)$$

 $1 \le x \le u$
 $x \in \mathbb{R}^n$

▶ High-quality can be measured by more than the objective.

Motivation

▶ We want to identify distinct, "high-quality", local minimizers of

minimize
$$f(x)$$

 $1 \le x \le u$
 $x \in \mathbb{R}^n$

- High-quality can be measured by more than the objective.
- ▶ Derivatives of *f* may or may not be available.

Motivation

We want to identify distinct, "high-quality", local minimizers of

minimize
$$f(x)$$

 $1 \le x \le u$
 $x \in \mathbb{R}^n$

- High-quality can be measured by more than the objective.
- Derivatives of f may or may not be available.
- ► The simulation *f* is likely using parallel resources, but it does not utilize the entire machine.

Why concurrency? Tiled QR example

[Bouwmeester, et al., Tiled QR Factorization Algorithms, 2011]

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D
- Or possibly wait a long time (or forever)

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D
- Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates iterates which are dense in the domain.

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- ▶ Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D
- Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates iterates which are dense in the domain.

An algorithm must trade-off between "refinement" and "exploration".

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- ▶ Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D
 - concurrent evaluations of f
- Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates iterates which are dense in the domain.

An algorithm must trade-off between "refinement" and "exploration".

Multistart Methods

- lacktriangle Explore by random sampling from the domain ${\cal D}$
- ▶ Refine by using a local optimization run from some subset of points

Multistart Methods

- lacktriangle Explore by random sampling from the domain ${\cal D}$
- ▶ Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

Multistart Methods

- lacktriangle Explore by random sampling from the domain ${\cal D}$
- ▶ Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

- + Get to use (more developed) local optimization routines.
 - least-squares objectives, nonsmooth objectives, (un)relaxable constraints, and more
- + Increased opportunity for parallelism
 - objective, local solver, and global solver
- Can require many sequential evaluations for the local solver

Given some local optimization routine \mathcal{L} :

Algorithm 1: MLSL

for k = 1, 2, ... do

Sample f at N random points drawn uniformly from $\mathcal D$

Start \mathcal{L} at all sample points x:

- that has yet to start a run
- ▶ $\nexists x_i : ||x x_i|| \le r_k$ and $f(x_i) < f(x)$

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57–78, 1987]

Given some local optimization routine \mathcal{L} :

Algorithm 1: MLSL

for k = 1, 2, ... do

Sample f at N random points drawn uniformly from \mathcal{D} Start \mathcal{L} at all sample points x:

- that has yet to start a run
- ▶ $\nexists x_i : ||x x_i|| \le r_k$ and $f(x_i) < f(x)$

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57-78, 1987]

- ▶ Doesn't naturally translate when evaluations of *f* are limited
- Ignores some points when deciding where to start L

- ▶ $f \in C^2$, with local minima in the interior of \mathcal{D} , and the distance between these minima is bounded away from zero.
- $ightharpoonup \mathcal{L}$ is strictly descent and converges to a minimum (not a stationary point).

 $r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\Gamma\left(1 + \frac{n}{2}\right) \operatorname{vol}\left(\mathcal{D}\right) \frac{\sigma \log kN}{kN}}$

Theorem

If $r_k \to 0$, all local minima will be found almost surely.

(1)

- ▶ $f \in C^2$, with local minima in the interior of \mathcal{D} , and the distance between these minima is bounded away from zero.
- \blacktriangleright $\mathcal L$ is strictly descent and converges to a minimum (not a stationary point).

 $r_{k} = \frac{1}{\sqrt{\pi}} \sqrt[n]{\Gamma\left(1 + \frac{n}{2}\right) \operatorname{vol}\left(\mathcal{D}\right) \frac{\sigma \log kN}{kN}}$ (1)

Theorem

If $r_k \to 0$, all local minima will be found almost surely.

If r_k is defined by (1) with $\sigma > 4$, even if the sampling continues forever, the total number of local searches started is finite almost surely.

$$\hat{x} \in \mathcal{S}_k$$

- (S2) $\nexists x \in S_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S3) \hat{x} has not started a local optimization run
- (S4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima

MLSL: (S2)-(S4)

$$\hat{x} \in \mathcal{S}_k$$

- (S1) $\nexists x \in \mathcal{L}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S2) $\nexists x \in \mathcal{S}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S3) \hat{x} has not started a local optimization run
- (S4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima

BAMLM: (S1)–(S4), (L1)–(L6)

$$\hat{x} \in \mathcal{L}_k$$

- (L1) $\nexists x \in \mathcal{L}_k$ $[\|\hat{x} - x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (L2) $\nexists x \in \mathcal{S}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (L3) \hat{x} has not started a local optimization run
- (L4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima
- (L5) \hat{x} is not in an active local optimization run and has not been ruled stationary
- (L6) $\exists r_k$ -descent path in \mathcal{H}_k from some $x \in \mathcal{S}_k$ satisfying (S2-S4) to \hat{x}

Properties of the local optimization method

Necessary:

- Honors a starting point
- ► Honors bound constraints

Properties of the local optimization method

Necessary:

- Honors a starting point
- Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Properties of the local optimization method

Necessary:

- Honors a starting point
- Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:

- Can return multiple points of interest
- Reports solution quality/confidence at every iteration
- Can avoid certain regions in the domain
- Uses a history of past evaluations of f
- Uses additional points mid-run

AAMLM

Algorithm 2: AAMLM

```
Give each worker a point to evaluate
for k = 1, 2, ... do
    Receive from (longest waiting) worker w that has evaluated f
   Update \mathcal{H}_{k} and r_{k}
   if point evaluated by w is from an active run then
       if Run is complete then
           Update X_{\nu}^*, and mark points inactive
       else
           Add the next point in its localopt run (not in \mathcal{H}_k) to Q_L
       Start run(s) at all point(s) satisfying (S1)-(S4), (L1)-(L6)
       Add the subsequent point (not in \mathcal{H}_k) from each run to Q_L
    Merge runs in Q_I with candidate minima within 2\nu of each other
    Give w a point at which to evaluate f, either from Q_I or \mathcal{R}
```

BAMLM

MLSL: (S2)-(S4)

$$\hat{x} \in \mathcal{S}_k$$

- (S1) $\nexists x \in \mathcal{L}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S2) $\nexists x \in S_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S3) \hat{x} has not started a local optimization run
- (S4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima

BAMLM: (S1)–(S4), (L1)–(L6)

$$\hat{x} \in \mathcal{L}_k$$

- (L1) $\nexists x \in \mathcal{L}_k$ $[\|\hat{x} - x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (L2) $\nexists x \in \mathcal{S}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (L3) \hat{x} has not started a local optimization run
- (L4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima
- (L5) \hat{x} is not in an active local optimization run and has not been ruled stationary
- (L6) $\exists r_k$ -descent path in \mathcal{H}_k from some $x \in \mathcal{S}_k$ satisfying (S2-S4) to \hat{x}

AAMLM Theory

Theorem

Given the same assumptions as MLSL, AAMLM will start a finite number of local optimization runs with probability 1.

AAMLM Theory

Theorem

Given the same assumptions as MLSL, AAMLM will start a finite number of local optimization runs with probability 1.

Assumption

There exists $K_0 < \infty$ so that for any K_0 consecutive iterations, there is a positive (bounded away from zero) probability of evaluating a point from the sample stream and each existing local optimization run.

AAMLM Theory

Theorem

Given the same assumptions as MLSL, AAMLM will start a finite number of local optimization runs with probability 1.

Assumption

There exists $K_0 < \infty$ so that for any K_0 consecutive iterations, there is a positive (bounded away from zero) probability of evaluating a point from the sample stream and each existing local optimization run.

Theorem

Each $x^* \in X^*$ will almost surely be either identified in a finite number of evaluations or have a single local optimization run that is converging asymptotically to it.

Measuring Performance

```
GLODS Global & local optimization using direct search [Custódio,
      Madeira (JOGO, 2014)]
    Direct Serial DIRECT [D. Finkel's MATLAB code]
pVTDirect Parallel DIRECT [He, Watson, Sosonkina (TOMS, 2009)]
  Random Uniform sampling over domain (as a baseline)
 BAMI M
         Concurrency: 4

    Local optimization method

             ORBIT [Wild, Regis, & Shoemaker (SIAM JOSC, 2008)]
             BOBYQA [Powell, 2009]
         ▶ Initial sample size: 10n
```

▶ Each method evaluates Direct's 2n + 1 initial points.

Measuring Performance

Let X^* be the set of all local minima of f.

Let $f_{(i)}^*$ be the *i*th smallest value $\{f(x^*)|x^*\in X^*\}$. Let $x_{(i)}^*$ be the element of X^* corresponding to the value $f_{(i)}^*$.

The global minimum has been found at a level $\tau > 0$ at batch k if an algorithm it has found a point \hat{x} satisfying:

$$f(\hat{x}) - f_{(1)}^* \le (1 - \tau) \left(f(x_0) - f_{(1)}^* \right),$$

where x_0 is the starting point for problem p.

Measuring Performance

Let X^* be the set of all local minima of f.

Let $f_{(i)}^*$ be the *i*th smallest value $\{f(x^*)|x^* \in X^*\}$. Let $x_{(i)}^*$ be the element of X^* corresponding to the value $f_{(i)}^*$.

The j best local minima have been found at a level $\tau > 0$ at batch k if:

where j and \bar{j} are the smallest and largest integers such that

$$f_{(j)}^* = f_{(j)}^* = f_{(j)}^*$$
 and where $r_n(\tau) = \sqrt[n]{rac{ au \operatorname{vol}(\mathcal{D})\Gamma(rac{n}{2}+1)}{\pi^{n/2}}}$.

Problems considered

GKLS problem generator [Gaviano et al., "Algorithm 829" (TOMS, 2003)]

- ▶ 600 synthetic problems with known local minima
- ▶ n = 2, ..., 7
- ▶ 10 local minima in the unit cube with a unique global minimum
- ▶ 100 problems for each dimension
- 5 replications (different seeds) for each problem
- ▶ 5000 evaluations

$$f(x) - f_{(1)}^* \le (1 - 10^{-5}) \left(f(x_0) - f_{(1)}^* \right)$$

$$f(x) - f_{(1)}^* \le (1 - 10^{-5}) \left(f(x_0) - f_{(1)}^* \right)$$

$$f(x) - f_{(1)}^* \le (1 - 10^{-5}) \left(f(x_0) - f_{(1)}^* \right)$$

Closing Remarks

Concurrent function evaluations can locate multiple minima while efficiently finding a global minimum.

Closing Remarks

Concurrent function evaluations can locate multiple minima while efficiently finding a global minimum.

Write/use algorithms that exploit problem structure

Closing Remarks

Concurrent function evaluations can locate multiple minima while efficiently finding a global minimum.

Write/use algorithms that exploit problem structure

Current work:

- Finding (or designing) the best local solver for our framework?
- Best way to process the queue?

AAMLM

Algorithm 2: AAMLM

```
Give each worker a point to evaluate
for k = 1, 2, ... do
   Receive from (longest waiting) worker w that has evaluated f
   Update \mathcal{H}_k and r_k
   if point evaluated by w is from an active run then
       if Run is complete then
           Update X_k^*, and mark points inactive
       else
           Add the next point in its localopt run (not in \mathcal{H}_k) to Q_L
       Start run(s) at all point(s) satisfying (S1)-(S4), (L1)-(L6)
       Add the subsequent point (not in \mathcal{H}_k) from each run to Q_l
   Merge runs in Q_I with candidate minima within 2\nu of each other
```

Give w a point at which to evaluate f, either from Q_l or \mathcal{R}

